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Abstract

Both photometric and geometric information are important for 3D object recog-
nition. Traditionally, however, few systems utilized both types of information.
This is because no single representation is suitable for both types of information.
This paper proposes a method for representing both color and geometric infor-
mation using a common framework, the Spherical Attribute Image (SAI). The
SAI maps the values of curvature and color computed at every node of a mesh
approximating the object surface onto a spherical image. A model object and an
observed surface are computed by finding the rotation that brings their spherical
images into correspondence. We show how this matching algorithm can be used
for object recognition using both geometric and photometric information. In
addition, we describe how the two types of information can be combined in a
way that takes into account their actual distribution on the surface.
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1 Introduction

This paper addresses the problem of recognizing three-dimensional curved objects in
range and color images. More specifically, given a three-dimensional model of an object
and a similar description of a surface observed in a range and color image, the problem is
to compute the pose which best matches the model and the observed surface.

Traditionally, this problem has been addressed in two different ways. Some approaches
use only geometric information such as curvature, local shape indicators, surface patches,
or surface features such as edges. Other approaches use photometric information in the
form of regions of uniform hue, color histograms, or edges extracted from reflectance dis-
continuities in images. There is little in common between these two classes of approaches.
They use different types of object models, different matching strategies, and operate under
different assumptions. These make variances building an object recognition system using
both geometric and photometric information difficult. This paper addresses this problem.

We represent both photometric and geometric information using a common framework,
the Spherical Attribute Image (SAI). The SAI coordinate system is based on constructing a
quasi uniform regular mesh on the object surface by deforming a spherical mesh. The
deformed mesh has a one-to-one mapping to the original reference spherical mesh. We
obtain a spherical representation of the object by mapping properties computed at every
node of the mesh, such as curvature to the corresponding nodes on the sphere. By compar-
ing the spherical image of a complete model with the partial spherical image extracted
from an image, we can obtain the pose of the object in the scene.

In our previous work [5], we used only shape information because we stored only curva-
ture in the spherical image. We also showed how to obtain the globally optimum pose
without combinatorial search. These results were encouraging steps toward recognizing 3-
D curved objects. However, shape information alone is not sufficient for matching objects
in general. Consider the simple case of a painted sphere, for example. It is obvious that it
is impossible to compute the transformation between a model and an observation of the
object, whereas it is equally obvious that we ought to be able to compute the transforma-
tion from color information. Although this is a rather artificial example, it illustrates the
need for including photometric information.

In itself, using photometric information would not be an improvement if it required pre-
cise color segmentation or the extraction of color features, both of which are difficult
problems in themselves. The main contribution of our algorithm is precisely that it does
not require any color segmentation or color features because it uses the color distribution
on the surface directly. Since we use essentially the same approach with color as with
shape information, the matching algorithm also has the same two important properties
emphasized in [5]. First, it is not based on a restrictive mathematical surface model and it
can be applied to a large class of 3-D curved objects. Second, it can be applied to matching
partial views of objects as is normally the case in object recognition problems instead of
only full models even though we are using a spherical representation.

The paper is divided into three parts. In the first part, we review our approach to object
matching using the SAI. This approach was initially developed for recognizing objects
using shape information such as curvature. In this first part, we indicate how non-geomet-
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ric information, such as color, can be included in the same framework in a natural way. We
do this by drawing a parallel between matching spherical images of 3-D surfaces and cor-
relating 2-D images. In the second part, we discuss the matching of 3-D objects using
color information only. We analyze the performance of the algorithm on a cylindrical
object whose pose cannot be calculated from shape information only. At the end of this
section, we compare the use of color and shape information on an object for which either
could be used for recovering object pose. This example is used as an introduction to the
third section in which we present an algorithm for combining shape and color information
in a way that takes advantage of both. We show results that indicate that the matching
algorithm performs better by combining the two types of information than by using either
one individually.

2 Overview of SAI Coordinate System

This section reviews the basic ideas behind our representation of surfaces and introduces
the extension of the matching algorithm from geometric to photometric information by
drawing an analogy between correlating sets of points in the plane and matching surfaces
using our representation.

2.1 Definition of SAI Coordinate System

Our basic representation is a mesh of nodes approximating the surface with a fixed topol-
ogy and certain local regularity propertie.. Fitting a discrete mesh to range data is done
using techniques based on the concept of deformable surfaces [4].

The deformation process involves a local regularity constraint. The local regularity con-
straint is introduced so that two instances of the same surface in different poses have simi-
lar meshes. Specifically, while building the mesh, we enforce a local constraint so that the
distribution of mesh nodes on the surface is approximately uniform. This constraint is
included in the deformable surface formalism. See {4] for more details.

Figure 1 illustrates an indexing of nodes between the object mesh and its spherical repre-
sentation in 2D case. Since the mesh has a fixed topology, it can be viewed as a deforma-
tion of a canonical reference mesh on the unit sphere. Specifically, for a given size of the
mesh, a standard numbering of the nodes can be defined on the mesh. We call the number
associated with every node its index. This indexing depends only on the size of the mesh
and its topology. Therefore, there is a similar indexing scheme for the reference spherical
mesh and for the surface mesh; we can associate with each node N of the surface mesh the
node N, of the spherical mesh with the same index. This defines a standard mapping
between a mesh and the unit sphere.

Finally, we can store at a node N, of the spherical mesh any quantity computed at the
corresponding node N of the surface mesh, thus creating a spherical image of the surface.
Once the spherical images are built, matching objects involves finding the best rotation
that brings the two spherical images in correspondence.




2.2 Cartesian Coordinates and SAI Coordinates

In our previous work [5], we viewed the spherical image as a way to store shape infor-
mation. Specifically, we introduced the notion of a simplex angle which is a measure of
the local curvature of the surface', and we called the corresponding spherical image the
simplex angle image. In general, we can store in the spherical image any value computed
from the object, not just shape information. The rest of the paper focuses on the use of
photometric information instead of, or in combination with, shape information.

In order to understand the properties of the SAI representation, it is convenient to view it
as a way to define intrinsic coordinates on the surface. Specifically, we can draw an anal-
ogy between Cartesian coordinate systems in the plane and SAI coordinate systems.
Under this analogy, coordinates of points corresponds to indexing of nodes on a mesh,
while correlation of planar sets of points corresponds to correlation of SAI matching.

In conventional Cartesian geometry, three points in a plane and the corresponding three
points in a transformed version of the plane define a transformation between the two
planes. Namely, the location of a point in the first plane is entirely determined by the loca-
tion of the corresponding point in the transformed plane with respect to the three basis
points.

In the case of SAI representation, the correspondences between three arbitrary nodes on
two meshes M; and M, define a unique mapping between the nodes of M; and M,.

In Cartesian geometry, knowing the correspondences between points defines a change of
coordinates. In a similar way, in the SAI coordinate system, knowing the correspondences
between nodes defines a transformation of the indices of the nodes. Moreover, just as the
only coordinate transforms that preserve distances and angles are the rigid transforma-
tions, the only indexing of nodes that preserve the local regularity constraint and the topol-
ogy of the mesh are the ones that can be generated by a rotation of a spherical mesh. This
last property can be better understood in the context of plane curves, in which two differ-
ent indexings of the vertices on the curve correspond to a rotation of the node numbers on
the unit circle (Figure 1).

To summarize, the SAI mesh has the same properties as the 3-D Cartesian space by

L LN 1)

replacing the words “plane” by “spherical surface”, “coordinates” by “indices”, “points”
by “mesh nodes”, “change of coordinates” by “index transformation”, and “rigid transfor-
mation” by “rotation of the SAI mesh”. The analogy can be pushed further by saying that
two sets of points in the plane are matched if there exists a rigid transformation that brings
the two sets into registration and such that the values stored at corresponding points are
identical. The analogous property of SAI meshes is that two meshes represent the same
object if there exists a valid index transformation of the nodes between the two meshes

such that the values stored at corresponding nodes are identical.

1. Although the simplex angle is not exactly the Gaussian nor the mean curvature of the surface. we will
refer to it as “curvature” in the rest of paper for simplicity.
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2.3 SAI Matching

As a result of the last property, we can see that in order to match two meshes M and M’
constructed from two views of a surface, we need to find the rotation R such that the value
stored at any node N of M is the same as the value stored at the corresponding node N’ =
R(N). This rotation establishes an index transformation between S and .§’, which in tumns
establishes a correspondence between the nodes of M and M. Finally, the rigid transfor-
mation between the underlying surfaces of M and M’is computed by minimizing the dis-
tance between the corresponding nodes of M and M.

Formalty, the best rotation is found by finding the maximum of a similarity measure
D(R, 5, S’ related to the sum of squared differences between the value of surface curva-
ture ¢ stored at every node N of S and the curvature ¢’ stored at the corresponding node
R(N) of $*

D(RS,S) = z exp (H

Ne S

=3 ( a )

( I c(N) =c(R(N)) 2)
c

where . is a constant value that defines the sensitivity of the similarity to the differences
between the corresponding nodes of M and M. If o is too small, only small differences
contribute to D(R, S, $). In particular, there is no contribution at the node that has differ-
ences beyond 30... On the other hand, the maximum of D(R, S, ") is shallow if o is large.
We set o, experimentally as follows: we computed D(R, S, 5 for a few test cases by
changing o, from a large value until the significant peak in the distribution of D(R, S, 5%
appears. We selected the appropriate value of o as the one yielding the sharpest peak of
D(R, S, S for the test cases. In practice, o is directly related to the average variation of
curvature on typical objects.

In our previous work [5], we used the sum of squared differences as a distance measure
that is minimum for the best rotation. We use here a similarity measure rather than a dis-
tance measure for technical reasons but the results are the same.

One technical difficulty is that the sum in Equation (1) has taken over the entire spherical
image even though only a subset of the spherical image should be used, that is, the part
that corresponds to the part of the object visible in the range image. In practice, the algo-
rithm used for fitting the mesh to the surface of the object can identify which points of the
mesh are computed from actual range data and which points are interpolated. This infor-
mation is used to determine which subset of the spherical image corresponds to actual data
and should be included in the summation. In the rest of the paper, we will write the simi-
larity as a sum over the entire sphere as in Equation (1) but it should be clear that, in the
actual implementation, the sum is taken only over the visible subset of the sphere.

Our construction of the discrete mesh and of its associated spherical image allows us to
generalize the concept of correlation of two 2-D sets of points to the concept of correlation
of two 3-D surfaces. In particular, we have reduced the difficult problem of finding a six-
degree of freedom transformation to the easier problem of finding a rotation between
spherical images.




spherical mapping

rotation of
circular image

shape cxrcular image

Figure 1 : Indexing nodes on a 2-D curve: Two different regular discrete approximations of a 2-D
curve with the same number of points are related by a rotation of the indices on the unit circle.

3 Matching Using Color Data

Since the SAI representation defines a coordinate system over an 3D object surface, we
can store not only geometric information but also photometric information such as color.
In the work discussed here, we compute the hue at every point on the surface and store it at
the corresponding node of the spherical mesh. The hue is the simplest characterization of
color. In reality, a more sophisticated model of color formation should be used to account
for color constancy, specularity, shadows, etc. However, our emphasis here is on the dem-
onstration of the spherical mapping as a tool for registering object models using photomet-
ric information, a task for which the hue is sufficient.

Matching objects using color proceeds in the same manner as in the case of geometric
data discussed in Section 2.3. The similarity between the spherical representations of the
model and of the observed data is computed for the possible rotations of the unit sphere.
The similarity is defined as a function of the sum of the squared differences of the hue
value & at every point of the spherical representation instead of the sum of the differences
of the curvature values:

DRSS) = ¥ (erxp(_l(h(m KRN, )) 2)

NesS ah

where «, is a constant value that defines a sensitivity of the similarity to the differences.
As in the case of geometric data, o, is chosen experimentally by considering an average
variation of hue values of several objects. w is a weight value that takes into account inten-
sity and saturation at each node. Specifically, it is necessary to avoid influences of the
nodes at which there is little photometric information. In fact, w is computed as a function
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of both intensity and saturation at the corresponding nodes between the model data and the
observed data. That is, w becomes large at the node that has a large saturation value and a
large intensity value.

As in Section 2.3, the best rotation between S and $’is the one that realizes the maximum
of D. Once the rotation between $ and $’is computed, the full transformation between the
original surfaces M and M’ is computed as before by establishing the correspondence
between mesh nodes and by minimizing the distance between corresponding nodes.

Let us consider a cylindrical object to verify that this algorithm enables us to correctly
register surfaces. Because of the axis of symmetry of the cylinder, it is impossible to
recover the pose of this object in an image using shape information alone. However, the
pose is correctly recovered using the mapping of hue onto the intrinsic spherical represen-
tation of the surface as shown in Figure 2. Figure 2(a) shows the image of a cylinder that
has significant photometric features on the surface. Figure 2(b) shows the model of the
object as a mesh of points, which is the dual of the 7th subdivided icosahedron containing
980 faces. Figure 2(d) shows the result of mapping hue onto the SAI coordinate system. In
this display, the hue is indicated by gray level intensity. The hue is encoded using the scale
of Figure 2(c). We will use this scale in all the figures in the remainder of the paper. Also,
in the rest of the paper, the SAI will always be displayed as in Figure 2(d), i.e., by placing
each node at a distance from the center propotional to the curvature. Here, the curvature
distribution over the SAI coordinate system is uniform around the axis direction and no
meaningful result can be obtained by correlating the curvature spheres. However, the hue
distribution exhibits clear features due to the uneven distribution of hue on the original
object.

Figure 2(e) shows the graph of the similarity between spheres of different poses as a
function of rotation angles for hue mapping. Since the space of rotations is three-dimen-
sional, we display a two-dimensional view of D(R, , S’ by plotting for each of the values
of two of the rotation angles, say ¢ and 0, the maximum value of D over all possible val-
ues of the third angle . In the rest of the paper, the graph of similarity measure will be
displayed as in Figure 2(e). The units in the graph are 10° in both ¢ and 6. The range of
angles is 0 to 360° in ¢ and 0 to 180° in 6. Here, we include the graphs of D over the entire
space of rotations in order to illustrate its behavior over the entire space. In practice, it is
not necessary to explore the entire snace at full resolution.

Figure 2(f) shows the result of the matching as a superimposition of the model data and
the observed data using the transformation computed from the optimal rotation between
spheres. One can see that the correct rotation about the axis of symmetry has been com-
puted. In fact, we took two range images by rotating the object on the rotational table. The
rotation angle computed by this matching result is 30.5° where the actual rotation angle is
30.0°. There are two reasons for the residual 0.5° error. First, because of the discretization
of a mesh, there is a minimum distance between the node on the model surface and its cor-
responding node on the other. Second, we assume that the hue value is a photometric
invariance; however, the variance is slightly dependent on the direction of the illumination
despite the color compensation using a reference object under the illumination.
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(b) (©

@ (e)

Figure 2 : SAI matching based on color information: (a) Original cylinder; (b) The object is
approximated by a regular mesh with N = 980 nodes; (c) Scale of hue; (d) Mapping of hue onto the
spherical representation; (e) Graph of similarity function using color; (f) Superimposition of the two
registered models using color; The correct pose of the model in the scene is found even though the
object has an axis of symmetry.

This example highlights the key features of using the SAI coordinate system for match-
ing surfaces which we stated earlier in the Introduction. First of all, the matching algo-
rithm does not require segmenting the color image or extracting color features, a difficult
problem in general. Instead, the algorithm relies solely on the hue distribution on the sur-
face. One consequence is that the algorithm does require combinatorial search for the best
combination of feature matches as is the case in most conventional approaches. Secondly,
the algorithm can recover full three-dimensional object pose without requiring a mathe-
matical model of the object surface because the underlying model, the discrete mesh, is
independent of any mathematical characterization of the surface. Finally, the algorithm
can handle partial views and occlusions because of the properties of the spherical map-
ping.
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4 Combining Photometric and Geometric Information

The purpose of combining photometric and geometric data is to take advantage of the
type of data that best yields discrimination between object poses. Therefore, we need to
evaluate at every node two quantities that measure the amount of information from both
types of data and we need to combine them into a single number which is included in the
similarity between spherical images, D. We have to solve two problems, quantifying the
amount of information ar a node, and scaling values from different sources of data in order
to compare them.

4.1 Combining Similarity Measures

In order to address these problems, we need to define some notations. We denote the
number of points on the mesh by N. We denote by c; and k; the values of curvature and hue
at a node i of a spherical model §, respectively. In order to simplify notations, we omit the
rotation R from the notations when there is no ambiguity. Specifically, we denote by h; the
hue of a node N of Sand by 4’;, using the same index i, the hue value of the corresponding
node R(N) of §’. Similarly, we will write the similarity D(R,S,5’) between two spheres $
and S’given a rotation R as D(S, $’), omitting the letter R. It should always be clear in both
cases that the indices and the similarities are defined with respect to a rotation. We denote
D (S5.5) (resp. Dp(S,5)) the similarity between S and S’ computed using curvature (resp.
hue). With these notations, the similarity measures are defined as:

c.—c'. 2
D.(5,§) = Z_exp(—%( = )) 3

1(h—H; :
D,(S,8) = E(Wixexp(—i( m ))) ()]

i h

With these definitions, we combine D, and Dy, into a composite similarity D by taking a
weighted sum:

D(S,5) = AD_(S,5) + (1-M) D, (S,8) (5)

In this definition of D, A is a scalar between 0 and 1 which characterizes the respective
contributions of the curvature and hue distributions to the overall distance. Specifically, A
= 1 means that only the curvature is taken into account in the matching, while A = 0 means
that only the hue distribution is used.

The problem now is to select an appropriate value of A. Clearly this number must depend
on the data. We choose A to be a function of the variance G, (resp. 6;) with respect to Tne
cevolnmbity o, (resp. o). In addition, we add the coefficient w which is computed by
averaging weight values taking into account mten51ty and saturanon The variance o,
(resp. op) are computed by averaging the local variance o (resp o ) around each node
over the entire sphere individually. The local variance ¢ (resp o k) at node i is computed
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by using a neighborhood K; which consists of the node and its three neighbors. In practice,
a larger neighborhood K; could be used. We denote by N; the size of the neighborhood.
With these definitions, we have the following equations:
2
&)
aC

A= 3 5 (6)

&)t~ &)

Zac zaf’ ZW,-

o, = o= w=-i- ™
ZX,’- (( Y ¢)/N) = Zﬁf (( Y, h)/N) ®)
je€K je K, € Ki je K;

The coefficients 6, and o, can be interpreted as follows: aic quantifies the variation of
curvature around node i, which is a measure of the quantity of information carried by the
curvature at that node j is an estimate of the information carried by the curvature over the
entire surface. A small value of 6. means that there is, on average, little variation of curva-
ture over the surface. The interpretation is the same for 6, and o;.

The intuitive interpretation of thlS choice of A is straightforward: If the values of o are
small compared to the values of a, , then the distance D, is scaled up by choosing A close
to 1. Conversely, if the values of o are large compared to the values of oc,", then D, is
scaled down by setting A close to 0.

4.2 Experimental Evaluation

Two criteria should be used in evaluating the combined similarity D. First, we need to
make sure that, if the best pose is found correctly from either curvature or color alone,
then it will be found as accurately by using a combination of the two. In other words, com-
bining curvature and color should not be worse than using each individually. The second
criterion is that the determination of the rotation between the spherical representations is,
in general, better with the combined similarity than with each similarity individually. This
criterion ensures that D; and D, are correctly scaled by A.

In order to evaluate the performance of the matching algorithm based on these two crite-
ria, we ran the matching algorithm on several test objects. Most of the test objects are
deliberately chosen to be extremely simple: painted cylinders, ellipsoids, and spheres.
This is because we want to evaluate the algorithm in extreme cases in which there is little
or no geometric information. Although these objects are unexciting from an object recog-
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nition standpoint, they are necessary for our experiments. We also include in this section
an example of matching using a real object with a complex shape.

To evaluate the first criterion, let us consider the cylindrical object shown in Figure 2(a).
As we denoted in Section 3, the hue distribution mapped on the SAI representation has
more significant information than the curvature distribution (Figure 2(c)). Figure 3(a), (b)
and (c) show the graphs of D, Dy, and D for this object, respectively. In this example, the
same optimal rotation is found in both (b) and (c). The computed rotation angle is 30.5°
where the actual rotation angle is 30.0°. Since the hue variation is larger with respect to
the curvature variation, A is computed at 0.36 using Equation (6).

To evaluate the second criterion, let us consider our second object (Figure 4). Figure 4(a)
shows the image of a plastic egg, in which the surface is split in two halves, one painted
red, the other one painted green. Figure 4(b) shows the mapping of hue onto the SAI rep-
resentation. Since the object is symmetrical in both shape and appearance, it is theoreti-
cally impossible to register the pose by using either curvature or color information
individually. Figure 4(c), (d) and (e) show the graphs of D, Dy and D for this object,
respectively. The best rotations which are computed by the maximum in the graphs of D,
and Dy, are both wrong because of the symmetries. However, we can get the right solution
by using the combined similarity. The rotation angle computed by using the combined
similarity is 18.8° where the actual rotation angle is 20.0°. Since both curvature and hue
variations are small, A is computed at 0.56 by using Equation (6).

To ensure that this algorithm is applicable to an object that has a more complicated
shape, let us consider our third object (Figure 5). Figure 5(a) and (b) show the images of a
toy duck in two different poses. Figure 5(c) shows the model of the object as a mesh. Fig-
ure 5(d) shows the mapping of hue onto the SAI representation. Figure 5(e), (f) and (g)
show the graphs of D, Dy, and D for this object, respectively. Figure 5(h) shows the super-
imposition of both model data and observed data which is transformed by using the
matching result of the combined similarity. Figure 5(i) shows the errors of the estimated
pose between the original range data and the transformed model. The length of the line at
each node indicates the distance between the node on the mesh and the data point that is
closest to the node. The average error over the entire mesh is 0.13mm where the accuracy
of this range finder system [11] is 0.lmm. Since we captured two different poses arbi-
trarily, we cannot estimate the actual rotation angle. However, according to this result, this
algorithm enables us to estimate the pose precisely. Table 1 summarizes the error statistics
for this object. In this example, A is computed at 0.89 using Equation (6). The value is
higher than in the previous two cases because the object has a more complicated shape.

In order to check the matching between a complete model and a partial model using both
color and curvature, let us consider our fourth object (Figure 6). Figure 6(a) shows the
images of a painted ball which are obtained by using three calibrated range finders. Figure
6(b) shows another pose using one of the range finders. Figure 6(c), (d) show the mapping
of hue onto the object mesh for each pose. Figure 6(e) shows the graph of D for this
object. Figure 6(f) shows the transformed object mesh computed from Figure 6(d) by
using the matching result. To evaluate this result, we compute the rigid transformation by
calculating the gravity point of each marked region and specifying the correspondence
between marks manually. The rotation angle by using both color and curvature informa-
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tions is 94.5° where the rotation angle from the manual estimation is 92.7°. Since there is
no geometric information, there are three rotational degrees of freedom which is the rea-
son why there is such a large error comparing previous cases. In this example, A is com-
puted at 0.03 using Equation (6), since there is no curvature information for this object.

These examples show that our determination of A does take explicitly into account the
relative distribution of information of the surface. Table 2 summarizes the coefficients
computed in these examples.

Table 1: Error statistics

color  curvature both
Min. error 0.010 _E.ﬁOldr - 0.00T-_
Max. error 0.676 0.651 0.665
Std. cerror | 0.097 0.082 0.089
Ave. error 0.150 0.132 0.135

Table 2: Summary of coefficients

cylinder egg duck ball
=;,_. 0.0305 0.0228 0.0; 1 0.0207
o, | 847 4.54 9.35 233
w | 0.959 0.889 0.668 0.888
A | 0.360 0.562 0.898 0.038
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Figure 3 : Combining color and curvature information-1: Figure 4 : Combining color and curvature information-2:

(a) Similarity using curvature only; (b) Similarity using (a) Image of a painted egg; (b) Mapping of hue onto
color only; (¢) Combined similarity sph:ﬂrica(ldliegmenuﬂon; (c) Similarity using curvature
omy;

imilarity using color only; (¢) Combined
similarity

® Cm ® © ®

Figure 5§ : Combining color and curvature information-3:  Figure 6 : Matching between a complete model and a partial
(a), (b) Image of a plastic toy (two poses); (c) Deformed view: (a) Original images measured from three different
mesh; (d) Mapping of hue onto spherical representation; (e) views; (b) Image of partial view; (c) Mesh of complete

Similarity using curvature only; (f) Similarity using color model mapped hue values; (d) Mesh of partial model
only; (g) Combined similarity; (h) Superimposition of mapped hue values; (¢) Matching using color and
original range data a;l&:sﬁm pose; (i) Matching errors  curvature; () Transformed mesh using the matching result;
o es pose
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S5 Conclusion

In this paper, we have shown how photometric information can be incorporated in the
SAI representation in addition to purely geometric information. We have shown that the
very same algorithm that was used for surface matching based on geometry can be used
for surface matching based on color distribution. The only difference is that the SAI stores
curvature in one case, and hue in the other. In addition, we have shown that it is possible to
combine geometric and photometric information in a way that takes into account the dis-
tribution of both on the object. This is done by defining the similarity between the SAls of
two objects as the weighted sum of the similarity measures computed from the shape
information and from the photometric information. We have developed a weighting
scheme that gives the highest weight in the evaluation of the similarity between SAIs to
the type of information that is most significant for a given object. For example, the photo-
metric term of the similarity measure between SAIs is weighted more heavily if the sur-
face of an object includes a large nearly spherical region in which there is no shape
information. Conversely, the geometric term is weighted more heavily if the color of the
object is nearly uniform across the surface.

The combined shape/appearance matching algorithm has several important properties.
First, it merges the two types of information in a natural way whereas traditional tech-
niques use shape and photometric information separately. Second, the matching algorithm
is applicable to a wide class of curved objects since the underlying mesh fitting algorithm
used for building the SAI representation makes few assumptions on the shape of the
object; and, the representation can handle partial views and occlusions owing to its prop-
erty of connectivity conservation. Finally, the algorithm does not rely on arbitrary thresh-
olds or scaling coefficients because all the parameters, for example, the weights between
the two similarity measures, are computed dynamically from the actual data.

Color is only one type of appearance information that can be used. Other types of infor-
mation, such as various measures of texture, could also be used in matching surfaces. An
natural extension of this work is its generalization to other types of information. Another
extension is the use of multiple appearance attributes instead of a single one, in our case,
the hue. This involves refining the weighting scheme to take into account the relative con-
tributions of multiple attributes.
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